HEALPix Finalize
finalize_statistics
finalize_statistics (state:Dict[int,healpyxel.accumulator.CellAccumulato r], percentiles:Optional[List[float]]=None, min_count:int=1)
*Convert accumulator state to final statistics DataFrame.
Args: state: Accumulator state dictionary {healpix_id: CellAccumulator} percentiles: List of percentiles to compute (e.g., [25, 50, 75]) min_count: Minimum observations required per cell (cells below this are NaN)
Returns: DataFrame indexed by healpix_id with statistics columns: - {col}_n: observation count - {col}_mean: mean value - {col}_std: standard deviation - {col}_min: minimum value - {col}_max: maximum value - {col}_p{N}: percentile (if T-Digest available)*
densify_healpix_map
densify_healpix_map (sparse_df:pandas.core.frame.DataFrame, nside:int, fill_value:float=nan)
*Create a complete HEALPix grid by filling empty cells with fill_value.
Args: sparse_df: DataFrame with healpix_id index (sparse) nside: HEALPix nside parameter fill_value: Value for empty cells (default: NaN)
Returns: Dense DataFrame with all 12*nside**2 cells*
export_to_geotiff
export_to_geotiff (df:pandas.core.frame.DataFrame, column:str, output_path:pathlib.Path, nside:int, crs:str='IAU:19900')
*Export a column to GeoTIFF format (requires rasterio and healpy).
Note: This creates an equirectangular projection from HEALPix data.*
| Type | Default | Details | |
|---|---|---|---|
| df | DataFrame | ||
| column | str | ||
| output_path | Path | ||
| nside | int | ||
| crs | str | IAU:19900 | Mercury IAU CRS |
main
main (argv=None)
Usage Example
See the main() function for CLI usage, or import functions directly for programmatic use.